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1.  Introduction

The magnetic tension force is a fundamental restoring force 
that contributes to the equilibrium and stability of magneto­
hydrodynamic systems. The tension force of interest in this 
paper is generated by the toroidal curvature of the magnetic 
field. This toroidal field tension force contributes to the equi­
librium of fusion devices such as the tokamak [1, 2], and it has 
recently been shown to play a key role in both the equilibrium 
and stability of solar-relevant line-tied magnetic flux ropes 
[3, 4]. In the case of the line-tied flux rope, two tension force 
contributions have been identified: (1) a quasi-static tension 
force that contributes to the flux rope equilibrium; and (2) a 
dynamic tension force that can exceed the quasi-static term and 
prevent the flux rope from erupting. In this paper, we analyze 
the relationship between these two tension force contributions, 
which were originally reported in [4] and [3], respectively.

A line-tied magnetic flux rope is an arched bundle of hel­
ical magnetic field lines and confined plasma that is anchored, 

or line-tied, at two fixed footpoints. Line-tied flux ropes are 
found most notably in the solar corona where they store 
large amounts of magnetic energy for long periods of time 
[5–10]. This stored energy is suddenly and catastrophically 
released during solar eruptive events [11, 12], which are of 
great interest due to their role in generating space weather in 
Earth’s magnetosphere [13]. Many solar eruptive events are 
thought to be driven by ideal magnetohydrodynamic instabili­
ties such as the kink [14–17] and torus instabilities [18, 19]. 
Predicting if and when these instabilities can trigger an erup­
tion, however, remains an area of active research.

Traditionally, ideal magnetohydrodynamic instabilities in 
the corona are studied with a combination of remote obser­
vations [20–25] and numerical modeling [26–31]. While 
substantial progress has been made, additional research is 
required to fully understand instability-driven flux rope erup­
tions. To this end, a dedicated laboratory experiment has 
recently been developed to study the torus and kink insta­
bilities in a well-controlled laboratory setting [3, 4, 32]. This 
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experiment is the first to generate long-lived laboratory magn­
etic flux ropes that evolve in a quasi-static equilibrium with 
the possibility of erupting due to either the kink or the torus 
instabilities. In this paper, we synthesize the key results of this 
experiment, which demonstrate the role of the toroidal field 
tension force both in setting the quasi-static equilibrium of the 
flux rope and in preventing certain flux ropes from erupting. 
The paper is organized as follows: In section 2, the laboratory 
setup is briefly introduced along with an experimental char­
acterization of the torus and kink instability parameter space. 
Then, in section 3, direct measurements of the quasi-static and 
dynamic magnetic tension forces are presented. The relative 
amplitudes and parameter dependence of these tension force 
contributions are compared. We end with a brief summary and 
discussion in section 4.

2.  Laboratory setup and results on flux rope 
stability

The laboratory experiments reported in this paper are con­
ducted in the magnetic reconnection experiment (MRX) [33] 
at Princeton Plasma Physics Laboratory. The experimental 
setup is described extensively elsewhere [3, 4, 32], so we 
only briefly review it here. A custom-built apparatus com­
prised of two electrodes mounted on a glass substrate and two 
sets of magnetic field coils is inserted into the MRX device 
to produce the line-tied flux rope plasmas. Four indepen­
dent magnetic field coil sets are used to produce a variety of 
vacuum (potential) field configurations. These vacuum fields 
are comprised of ‘guide field’ components that run toroidally 
along the flux rope and ‘strapping field’ components that run 
orthogonally to the rope. Once the vacuum field has been cre­
ated, a capacitor bank breaks down the flux rope plasma. Non-
potential magnetic energy is driven by the capacitor bank into 
the flux rope on a timescale of 150 μs, which is two orders 
of magnitude longer than the dynamic Alfvén time (τ ∼ 3A  
μs) and substantially shorter than the resistive diffusion time 
(τ ∼ 500R  μs). While these are not the first laboratory experi­
ments to produce arched line-tied flux ropes [34–36], they are 
the first to achieve this crucial separation of timescales, which 
mirrors the separation of timescales in the solar corona [12].

The MRX flux rope plasmas are diagnosed with a distrib­
uted, in situ magnetic probe array (see figure  1). The probe 
array is comprised of seven linear probes that are inserted 
vertically into the plasma. Inside each linear probe, miniature 
magnetic pickup coils are grouped in orthogonal sets of three at 
4 cm intervals. Since the probes are also spaced horizontally at 
4 cm intervals, the probe array measures all three components 
of the vector magnetic field on a   ×4 cm 4 cm grid. The probe 
array can be rotated between discharges to acquire magnetic 
field data from various cross-sections of the flux rope.

One key measurement provided by the probe array is the 
flux rope magnetic axis height. This is determined by finding 
the location where the poloidal magnetic field, =B ByP , 
reverses sign (see figure 1). This information can be used to 
construct a height-time plot for each flux rope discharge (see 
figure  2). The subpanels in figure  2(b) show the height of 

the flux rope apex, ( )z tap , overlaid on the measured poloidal 
magnetic field, ( )B t z,P . In each discharge the plasma current 
is nominally the same (figure 2(a)), but the height-time evo­
lution varies widely. This is because the vacuum magnetic 
field configuration has been modified in each case in order to 
explore the torus versus kink instability parameter space.

The stability criteria for the torus [18, 19, 30, 37–41] and 
kink [14–17, 26–29] instabilities form a two-dimensional 
instability parameter space that can be studied in the labo­
ratory. The torus instability is parameterized by the vacuum 
field decay index,

( )≡−
| |

∂| |
∂

>n z
z

zB

B 3

2
,

vac

vac
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where Bvac is the vacuum magnetic field and z is the height 
above the footpoints. The decay index quantifies how quickly 
the vacuum field, which provides the restoring forces on the 
flux rope, decays with height. If the restoring forces decay too 
quickly (high n), then the flux rope experiences a so-called 
loss-of-equilibrium and erupts. The kink instability, on the 
other hand, is parameterized by the edge safety factor,

Figure 1.  Laboratory setup and magnetic probe geometry for 
the line-tied flux rope experiments. Seven linear magnetic probes 
(yellow) extend vertically into the flux rope plasma (pink). 
Magnetic measurements acquired in the (a) toroidal and (b) 
poloidal cross-sections of the rope are shown on the right. In each 
case, the vectors represent the in-plane field, while the colors 
represent the out-of-plane field. The magnetic axis is located at 
the reversal point of the poloidal magnetic field, =B ByP . The 
toroidal field shown here is the plasma-produced internal field, 
BTi, which is paramagnetic with respect to the vacuum guide field, 
Bg. Reproduced with permission from Nature 528, 526 (2015). 
Copyright 2015 Nature Publishing Group.
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Here, ιa is the rotational transform, which measures the field 
line twist along the length of the flux rope [42]. Additionally, 
a is the flux rope minor radius, L is the flux rope length, 
BTa is the edge toroidal field, and / π≡B I a2Pa T  is the edge 
poloidal field, where IT is the toroidal flux rope current. Here, 
we assume that BTa is the vacuum field and that IT is 90% of 
the power supply current, giving a 10% uncertainty in qa (see 
[3]). For each laboratory flux rope discharge, the instability 
control parameters n and qa are evaluated at the maximum 
flux rope equilibrium height (the maximum of the red traces 
in figure 2(b)). The resulting values of n and qa for the four 
discharges in figure 2(b) are listed in figure 2(c).

The discharge-by-discharge analysis in figure  2 can be 
applied to all of the flux rope plasmas in the MRX database. 
The results of this extended analysis are shown in figure 3, 
which plots flux rope eruptivity across the torus versus kink 
(n versus qa) instability parameter space. The color in the 
plot corresponds to the normalized instability amplitude, 
⟨ ⟩/δz xf, which is a metric developed to quantify the eruptivity 
of a given flux rope. Here, the instability amplitude, ⟨ ⟩δz , 
is defined as the maximum of the envelope of the dynamic 
spatial oscillations about the equilibrium position of the flux 
rope. This instability amplitude is normalized to the footpoint 
major radius, xf. Values of ⟨ ⟩/δz xf for the four discharges in 
figure 2(b) are listed in figure 2(c).

Four distinct stability regimes are identified in figure 3, with 
the gray bars representing the empirical boundaries between 
them. The stable and eruptive regimes are anticipated in that 

both the torus and kink instabilities are (de)stabilized at (high) 
low n and (low) high qa. The failed kink regime is also antici­
pated in that it is qualitatively consistent with numerical simu­
lations of line-tied flux ropes [37]. Here, the kink instability 
is present, but it saturates at low amplitude. The conclusion is 
that, without the torus instability, the kink alone cannot drive 
an eruption. The surprisingly low torus instability threshold of 
∼n 0.8 is discussed in section 4. The fourth and final regime 

in figure  3 is the failed torus regime, which constitutes a 
new discovery. In this regime, flux ropes that are otherwise 
torus unstable (high n) fail to erupt. As will be described, this 
behavior is due to a previously unknown dynamic magnetic 
tension force that prevents the flux rope from erupting.

3.  Quasi-static and dynamic tension forces

The laboratory observations presented in the previous sec­
tion show that the flux rope can persist in a quasi-static equi­
librium (figure 2) and that unexpected stability can be found 
in the failed torus regime (figure 3). Both of these phenomena 
are linked to the toroidal field tension force that is the focus 
of this paper. In this section, we summarize our experimental 
results on the quasi-static and dynamic components of the 
toroidal field tension force. We then investigate the param­
eter dependences and the origins of these two tension force 
contributions.

In order to study the toroidal field tension force in the 
laboratory, the various force terms that act on the flux rope 
must be directly measured from the experimental data. The 
key force terms and the force measurement procedure are 
describe elsewhere in full detail [3, 4], so we only briefly 
summarize them here. In all, three force terms are considered: 
(1) the upwardly directed hoop force; (2) the downwardly 

Figure 2.  Height-time evolution of four different flux rope 
discharges. (a) Mean and standard deviation of the nominally 
identical flux rope current waveforms. (b) Apex height, ( )z tap , 
(black) overlaid on the poloidal magnetic field, =B ByP , measured 
for each of the four cases. The equilibrium, or quasi-static, position 
of the magnetic axis is shown in red. (c) Table of instability 
parameters for each discharge. Reproduced with permission from 
Nature 528, 526 (2015). Copyright 2015 Nature Publishing Group.

Figure 3.  The torus versus kink (n versus qa) instability parameter 
space. The normalized instability amplitude, ⟨ ⟩/δz xf, which 
represents the spatial extent of the dynamic evolution of the flux 
rope, is shown in color. Each point in the scatterplot contains 2–5 
flux rope discharge taken with identical experimental settings such 
that more than 800 discharges are represented. The stable, eruptive, 
and failed kink regimes are expected, but the failed torus regime 
constitutes a new discovery. Reproduced with permission from 
Nature 528, 526 (2015). Copyright 2015 Nature Publishing Group.
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directed strapping force; and (3) the downwardly directed 
toroidal field tension force.

The hoop force is a poloidal-field-generated force that is 
derived from the toroidal curvature of the flux rope. Increased 
magnetic pressure on the inside of the rope and decreased pres­
sure on the outside results in a net upward force. Shafranov 
[43] gives the hoop force expression in the large aspect ratio 
limit to be
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where IT is the toroidal current in the flux rope, R is the major 
radius, a is the minor radius, and �i is the normalized internal 
inductance. This expression is derived for a toroidally sym­
metric ring of current such that corrections are necessary for 
the non-circular shape of a line-tied flux rope [4].

The strapping force is a poloidal-field-generated restoring 
force that is due to the interaction between the flux rope 
toroidal current, IT, and the vacuum strapping field, Bs:

= × =−F I BI Bê .zs T s T s� (4)

Here the strapping force is written with an explicit negative 
sign such that IT and Bs are positive-definite.

The final force term is the toroidal field tension force. 
Much like the hoop force, the tension force is derived from 
the toroidal curvature of the flux rope. The key field comp­
onent for the tension force is the internal toroidal field, BTi. 
This magnetic field component arises in the cross-section of 
the flux rope in order to achieve minor radius force balance. In 
low-β (low thermal pressure) systems such as our laboratory 
experiments and the solar corona, BTi is paramagnetic with 
respect to the vacuum toroidal guide field, Bg. This paramag­
netism creates a minor radius magnetic pressure gradient that 
opposes the minor radius pinch force generated by the toroidal 
flux rope current.

When bent into an arch, the paramagnetic internal toroidal 
field, BTi and its associated poloidal currents, JP, interact to 
produce a strong downward force on the inside of the rope and 
a weak upward force on the outside. This asymmetry results in 
a net downward restoring force on the flux rope. As derived in 
[4], the tension force can be expressed as
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where ⟨ ⟩BT
2  is the cross-section averaged square of the total 

toroidal field and Rc is the radius-of-curvature of the flux rope.
The various force terms described above are measured 

in the experiment by collecting all three components of the 
magnetic field, B, and the current density, J, in discharges 
with the probe array aligned in the poloidal cross-section of 
the flux rope (see figure 1(b)). The vector magnetic field is 
measured directly by the probe array, and the toroidal (out-of-
plane) current density, JT, can be computed by taking the curl 
of the poloidal (in-plane) magnetic field, BP. If local toroidal 
symmetry is assumed, then the in-plane current density, JP, 
can be computed from the out-of-plane magnetic field, BTi [4]. 

With the vector fields and currents in hand, the following 
equation can be evaluated to convert the volumetric force den­
sity, ≡ ⋅ ×f J Bêz , to the force per unit length, F, acting at the 
flux rope apex, =z zap:

( ) [ ( ) ( )]∫ ∫θ θ=
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Here, θ is the poloidal field coordinate, r is the minor radius 
coordinate, a is the minor radius, and ( )h zT  is the curvilinear 
scale factor that accounts for the toroidal curvature of the flux 
rope. The evaluation of this equation is described in full detail 
in [4].

Figure 4(a) shows a comparison of experimentally meas­
ured forces to analytical predictions for a characteristic flux 
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Figure 4.  (a) Comparison of experimentally measured (solid 
patches) and analytically predicted (colored lines) forces for a 
sample flux rope discharge. The net measured force is shown in 
black. The forces are normalized to /µ π≡F I x4norm 0 T

2
f, where IT 

is the toroidal plasma current and x2 f is the footpoint separation 
distance. A force-free equilibrium is measured, which confirms that 
these experiments are low-β. The measured hoop force is weaker 
than the analytical prediction, while the tension and strapping forces 
are comparable. (b) The various force terms are condensed to scalar 
values by averaging over the time when the plasma current is within 
5% of its maximum. Regarding the tension force, the quasi-static 
contribution, ⟨ ⟩Ft , is the average of the low-pass-filtered tension 
force, while the dynamic contribution, δFt, is the maximum transient 
in excess of ⟨ ⟩Ft . In this example, δFt is larger in magnitude than ⟨ ⟩Ft , 
indicating that the dynamic tension force can be significant.
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rope discharge in MRX. The three experimentally measured 
force terms are shown as solid patches, while the analytical 
predictions are shown as solid lines of the same color. The 
hoop force is positive and pushes upward as expected, while 
the strapping force and tension force are negative and there­
fore combine to hold the flux rope in equilibrium. The net sum 
of the three experimentally measured force terms is shown as 
a black line. This net sum is approximately zero throughout 
the discharge, indicating that a force-free equilibrium is meas­
ured. With regard to the analytical predictions for this sample 
discharge, the strapping and tension forces match reasonably 
well, while the hoop force that is measured is substantially 
smaller than the hoop force that is predicted.

In figure 4(b), the experimentally measured force terms are 
condensed to scalar values that can be used to assess the flux 
rope force balance. These scalar force values, ⟨ ⟩Fi , are obtained 
by low-pass filtering and then averaging the corresponding 
force waveform over the time period where the plasma cur­
rent is within 5% of its maximum. The dynamic tension force, 
δFt, on the other hand, represents the maximum difference 
between the measured tension force waveform, ( )F tt , and its 
quasi-static average, ⟨ ⟩Ft . As figure 4(b) shows, the dynamic 
tension force can match and even exceed the magnitude of the 
quasi-static tension force.

The force analysis techniques introduced here can be 
applied across the MRX flux rope database to assess statistical 
trends in the forces. First, it is desirable to conduct a database-
wide comparison between analytical predictions and exper­
imental measurements of the quasi-static forces. As shown in 
figure 5, the trend of a weaker-than-expected hoop force holds 
consistently across the database, while the strapping field is 

well-predicted throughout. The quasi-static tension force, on 
the other hand, is sometimes well-predicted, though it can 
often exceed its analytical prediction by as much as a factor 
of two. The quasi-static tension force, which is often ignored 
in solar eruption models, contributes substantially to the force 
balance in all of the MRX flux rope equilibria [4].

Next, the three quasi-static force terms can be summed to 
determine the net force in each flux rope discharge. The single 
black dot with error bars in figure 5 shows the aggregate meas­
ured and predicted net force. We see that, to within error bars, 
a net force of zero is measured experimentally, but that a net 
positive force is predicted analytically. This implies that the 
theoretical equilibria are predicted to evolve toward higher alti­
tudes than are observed in the laboratory. This disparity persists 
in spite of efforts to compensate for the line-tied shape of the 
flux rope [4]. As such, we conclude that additional low-aspect-
ratio and line-tying effects are responsible for the lower altitude 
equilibria that are observed experimentally. The fact that a net 
force-free equilibrium is measured in the experiments confirms 
the assumption that these laboratory flux ropes, like those in the 
solar corona, are low-β and therefore dominated by ×J B forces.

With the quasi-static force analysis in hand, the final task is 
to investigate the impact of the dynamic toroidal field tension 
force, δFt, on the flux rope behavior. To this end, in figure 6, 
we examine the dynamic tension force fraction, which is 
defined as:

   
⟨ ⟩ ⟨ ⟩
δ

≡
+
F

F F
Dynamic tension fraction .t

s t
� (7)

This ratio between the dynamic component of the tension 
force, δFt, and the total quasi-static restoring force, ⟨ ⟩ ⟨ ⟩+F Fs t , 
reveals the parameter regimes where the dynamic tension force 
contributes significantly to the total force on the flux rope. 
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The measured hoop force is weaker than predicted, the strapping 
force is well-predicted, and the tension force can exceed predicted 
values by as much as a factor of two. When the various force terms 
are summed, a force-free equilibrium (zero net force) is measured 
but not predicted. Reproduced with permission from Phys. Plasmas 
in press (2016). Copyright 2016 American Institute of Physics.
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is plotted over the same n versus qa instability parameter space that 
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rope discharges. Interestingly, the dynamic tension force is most 
prevalent in the failed torus regime, somewhat noticeable in the 
failed kink regime, and entirely absent from the stable flux rope 
regime.
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The axes in figure 6 represent the same n versus qa parameter 
space that is defined in figure 3. The black dots in figure 6 are 
data points where force measurements are not available due 
to either the probe alignment or flux rope volatility. Among 
the viable data points, which each contain measurements from 
2–5 flux rope discharges, it is clear that the dynamic tension 
force can be quite large, and that in many cases it reaches 
a substantial fraction of the total quasi-static restoring force 
(strapping  +  tension). In terms of parameter regimes, figure 6 
reveals the following: (1) that the dynamic tension force con­
tributes most prominently in the failed torus regime; (2) that it 
plays a lesser role in the failed kink regime; and (3) that it is 
absent altogether in the stable flux rope regime. The concen­
tration of the dynamic tension force in the failed torus regime 
hints that this force may be the key to the unexpected lack of 
eruptivity observed in the experiments.

To demonstrate that the dynamic tension force is the key 
physical mechanism that prevents eruptions in the failed 
torus regime, we now examine the flux rope evolution during 
a characteristic failed torus event. Figure 7 shows one such 
event, which evolves over just a few Alfvén times, τA. First, in 
figure 7(a), the spatial evolution of the failed torus event shows 
that the flux rope initially rises before saturating and then 
abruptly collapsing back to its initial position. In figure 7(d), 
four spatial snapshots of the poloidal magnetic field, BP, and 
the corresponding toroidal current density, JT, show that the 

flux rope undergoes an internal reconfiguration during the 
failed torus event. In particular, the initially uniform JT pro­
file becomes strikingly hollow. At the same time, the para­
magnetic internal toroidal field, BTi, is transiently enhanced 
(see figure 7(e)). This transiently enhanced BTi produces the 
dynamic toroidal field tension force.

The hollowing of JT and the enhancement of BTi can best be 
understood by examining the toroidal and poloidal magnetic 
fluxes entrained in the flux rope (see figure 7(b)). Initially, the 
toroidal flux decreases and the poloidal flux increases as the 
flux rope rises. When the current profile hollows out, how­
ever, there is a rapid exchange of toroidal and poloidal fluxes. 
This exchange is interpreted as the signature of a magnetic 
self-organization event [44, 45] wherein magnetic reconnec­
tion facilitates the internal reconfiguration of the flux rope [3]. 
The details of the self-organization process in these flux ropes 
are investigated more closely in Yamada et al [46]. The key 
concept is that flux ropes in the failed torus regime can find 
a lower energy state through internal self-organization rather 
than external eruption.

Lastly, the ×J B force measurement techniques described 
earlier in the paper can be used to assess the impact of the 
magnetic self-organization process on the flux rope forces. 
In figure 7(c), the absolute values of the three force terms are 
compared. Initially, the hoop force exceeds the combined strap­
ping  +  tension restoring force. During the self-organization 
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event, however, the enhanced BTi generates a very large 
dynamic toroidal field tension force that overtakes the hoop 
force and prevents the flux rope from erupting. In this way, the 
dynamic toroidal field tension force that is observed throughout 
the failed torus regime in figure  6 is the direct cause of the 
unexpected failed torus behavior that is observed in MRX.

4.  Summary and discussion

In this paper, we report on the key role of both quasi-static and 
dynamic magnetic tension forces in the equilibrium and sta­
bility of line-tied magnetic flux ropes. These forces are studied 
in a laboratory experiment that is expressly designed to pro­
duce quasi-statically evolving flux ropes that may be driven to 
erupt by ideal magnetohydrodynamic instabilities such as the 
kink and torus instabilities. Four different stability regimes are 
observed in the experiment. The failed torus regime, where 
nominally torus-unstable flux ropes fail to erupt, constitutes 
a new discovery.

Direct measurements of the flux rope forces provide a deep 
understanding of the role of the quasi-static and dynamic ten­
sion forces. First, the quasi-static tension force contributes a 
restoring force that is of the same order as the strapping force 
in all of the measured laboratory equilibria. Furthermore, this 
quasi-static tension force can exceed analytical predictions by 
as much as a factor of two. As such, the quasi-static tension 
force must be considered in loss-of-equilibrium solar eruption 
models. The dynamic tension force, on the other hand, has an 
even more profound impact in the failed torus regime where 
it prevents the flux rope from erupting. Measurements show 
that magnetic self-organization events reconfigure the internal 
structure of the flux rope, thereby creating a transiently 
enhanced paramagnetic toroidal field and a corresponding 
dynamic toroidal field tension force. This dynamic tension 
force overtakes the hoop force and halts the eruption.

In the effort to connect these laboratory results to events 
in the solar corona, several experimental factors must be con­
sidered. First, the laboratory flux rope and power supply cir­
cuit differs from the solar case in that there is a large external 
series inductance in the laboratory that largely maintains the 
flux rope current during an eruption. In the solar case, on the 
other hand, the current is expected to drop as the rope expands 
in order to conserve poloidal flux [19]. Thus, the quasi- 
current-source behavior in the laboratory, in concert with the 
partial torus instability considerations of Olmedo & Zhang [40], 
contributes to the observed ∼n 0.8 torus instability threshold.

A second consequence of the series inductance in the 
laboratory circuit is that a large inductive electric field per­
sists following the eruption and ejection of a flux rope. This 
latent inductive electric field is likely responsible for the rapid 
reformation and re-eruption of the flux rope plasma that is 
observed in the eruptive regime (see figure  2(b)). A further 
consideration is that the inductive electric field and the prox­
imity of vessel wall are likely to influence how the flux rope 
detaches in the later stages of the eruption. These considera­
tions argue for future experiments with a larger chamber and 
a modified power supply with a smaller inductance and larger 
capacitance to elucidate these phenomena.

A final consideration for future work is to develop a better 
understanding of the magnetic self-organization process 
observed here. Though some evidence for an internal recon­
figuration via magnetic reconnection has been identified [46], 
the reconnection process has yet to be measured directly. 
Furthermore, the threshold for failed torus events independent 
of the kink instability should be identified. This is likely to 
involve further investigations of the role of magnetic helicity 
in this phenomenon, possibly through dedicated numerical 
simulations. Regardless, it is clear that the enhanced toroidal 
magnetic field and the resulting dynamic magnetic tension 
force that it generates can cause torus-driven flux rope erup­
tions to fail. This dynamic tension force is not accounted for 
in standard solar eruption models and therefore must be added 
to improve our ability to interpret and eventually predict solar 
eruptive events.
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